Near Integral Points of Sets Definable in O Minimal Structures
نویسنده
چکیده
Modifying the proof of a theorem of Wilkie, it is shown that if a one dimnsional set S is definable in an O minimal expansion of the ordered field of the reals, and if it is regularly exponentially near to many integral points, then there is an unbounded set, which is R definable without parameters, and which is exponentially near to S.
منابع مشابه
Weakly O-minimal Structures and Real Closed Fields
A linearly ordered structure is weakly o-minimal if all of its definable sets in one variable are the union of finitely many convex sets in the structure. Weakly o-minimal structures were introduced by Dickmann, and they arise in several contexts. We here prove several fundamental results about weakly o-minimal structures. Foremost among these, we show that every weakly o-minimal ordered field ...
متن کاملTame topology over dp-minimal structures
In this paper we develop tame topology over dp-minimal structures equipped with definable uniformities satisfying certain assumptions. Our assumptions are enough to ensure that definable sets are tame: there is a good notion of dimension on definable sets, definable functions are almost everywhere continuous, and definable sets are finite unions of graphs of definable continuous “multi-valued f...
متن کاملTopological properties of sets definable in weakly o-minimal structures
The paper is aimed at studying the topological dimension for sets definable in weakly o-minimal structures in order to prepare background for further investigation of groups, group actions and fields definable in the weakly o-minimal context. We prove that the topological dimension of a set definable in a weakly o-minimal structure is invariant under definable injective maps, strengthening an a...
متن کاملExpansions of the real line by open sets: o-minimality and open cores
The open core of a structure R := (R, <, . . .) is defined to be the reduct (in the sense of definability) of R generated by all of its definable open sets. If the open core of R is o-minimal, then the topological closure of any definable set has finitely many connected components. We show that if every definable subset of R is finite or uncountable, or if R defines addition and multiplication ...
متن کاملDefinable Sets in Ordered Structures. Ii
It is proved that any O-minimal structure M (in which the underlying order is dense) is strongly O-minimal (namely, every N elementarily equivalent to M is O-minimal). It is simultaneously proved that if M is 0minimal, then every definable set of n-tuples of M has finitely many "definably connected components." 0. Introduction. In this paper we study the structure of definable sets (of tuples) ...
متن کامل